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Resonant activation in a system with deterministic oscillations of barrier height
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~Received 21 November 2000; published 6 June 2001!

A thermally relaxing system with a harmonically oscillating barrier height is considered. The dynamics of
the system are described by a Smoluchowski equation with a time dependent right hand side. For both
absorbing and reflecting boundary conditions, the solutions of this equation show that the oscillating system
has the same resonant properties, and the same dependence on initial conditions, respectively, on the phase of
the harmonic oscillations, as a conventional resonant system in which the barrier executes dichotomic Mar-
kovian fluctuations.
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I. INTRODUCTION

The phenomenon of resonant activation is generally a
ciated with thermally relaxing systems in which the confi
ing barrier executes random fluctuations@1–4#. We find,
however, that the barrier fluctuations need not be rand
and show here that resonant activation is found also in
tems performing deterministic harmonic oscillations of fr
quencyg. Moreover, depending on the phase of the osci
tions timet50, the relaxation time may, in this case, have
single minimum as a function ofg, or a minimum and a
maximum, or no extremum at all.

II. DETERMINISTIC OSCILLATIONS

We consider an overdamped system described in sc
units by the Smoluchowski equation

]P

]t
5

]

]x FdV

dx
1

]

]xGP. ~1!

For a general time dependent potentialV5V(x,t) this equa-
tion may be too difficult to solve with satisfactory precisio
and for this reason we confine ourselves to the special c

V5V~x,tuf!52Va sin$2p~gt1f!%sin2 x, ~2!

whereg is the frequency of the harmonic oscillations of t
potentialV, andf is their phase. Imposing further on Eq.~1!
the absorbing boundary conditionsP(6p/2,t)50, we seek
the nonequilibrium distribution functionP(x,t), P(x,0)
5d(x), in the form

P~x,t !5 (
k50

`

ak~ t !cos~2k11!x. ~3!

The decay law then becomes

W~ t !5E
2p/2

p/2

dxP~x,t !52(
k50

`

~21!k
ak~ t !

2k11
, ~4!

with W(0)51 andak(0)52/p by virtue of the initial con-
ditions, and the relaxation timet of the decaying system i
defined by the integral
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t~g,f!5E
0

`

dtW~ t !. ~5!

Upon substituting Eq.~3! into the Smoluchowski Eq.~1!
we find that the coefficientsak(t) satisfy the tridiagonal sys
tem of linear differential equations

ȧ052~12v !a02va1 , ~6!

ȧk5~2k11!vak212~2k11!2ak2~2k11!vak11 , ~7!

k>1, whereȧk5dak /dt, and

v5v~ t !5Va sin$2p~gt1f!%

for brevity. We apply to this differential system the bac
ward Euler method@5#, and solve then~after cutoff! the re-
sultant tridiagonal linear system using Lorentz unit~LU! de-
composition@6#. The accuracy of the computation is verifie
by varying the cutoff value~typically N&5000 is sufficient!
and the time step of the backward Euler integration.

The behavior of the relaxation timet(g,f) of Eq. ~5! is
apparent from Fig. 1 and from the more detailed selec
plots of Fig. 2. According to these figures, the relaxati
time has a resonant minimum as a function ofg for almost
all values of the phasef, except for those close tof53/4.

Particularly interesting is the behavior of the functio
t(g,0) shown in Fig. 2: There isV(x,tu0)ug50[0, and ac-
cordingly t(0,0)5t free5p2/8 corresponds to the free pa
ticle result. With increasing frequencies the relaxation tim
initially increases@as the energy barrier to be overcome
greater than zero fortP(0,1/2g)] towards a local maximum.
At even greater frequencies the functiont(g,0) then exhibits
a resonant minimum, and limg→`t(g,0)5t free in accordance
with Ref. @2#. With increasing temperature~decreasing re-
duced energyVa) the local maximum shifts to the right an
the local minimum to the left along theg axis. At the same
time the resonance amplitude decreases, and the free pa
result is recovered in the limitVa→0.

At f51/4 and f51/2 the barrier height initially de-
creases att>0, and the curvest(g,1/4) andt(g,1/2) there-
fore exhibit the customary single resonant extremum~mini-
mum!, though with a lesser resonant amplitude forf51/2.
The functiont(g,3/4), on the other hand, monotonically in
©2001 The American Physical Society01-1
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creases withg, since att50 the barrier is in the inverted
configuration and the relaxation ratet@1/g for all but the
highest driving frequencies.

We have also computed an average over a random p
f,

t̃~g!5E
0

1

df t~g,f!, ~8!

and found it to be dominated at smallg by the larget values
close tof51/4 ~see Figs. 1 and 2!, and to have a single
extremum, viz the resonant minimum.

FIG. 1. The relaxation timet5t(g,f) versus the phasef at
selected values of the harmonic oscillations frequencyg, with
ln g525 ~labeled!, 24, 23.5, 23, 22 ~labeled!, 21, 0 ~labeled!,
0.5, 1, 1.5, 2, 2.5, and 3~frontmost curve!. Absorbing boundary
conditions, andVa510, so that the reduced barrier height is in t
interval ^220,20&. See Fig. 2 for plots oft(g,f) versusg at se-
lected values off.

FIG. 2. The relaxation timet5t(g,f) versus the harmonic
oscillations frequencyg at selected values of the phasef50, 1/4,
1/2, and 3/4~labeled dashed lines!. Also shown is an average ove
a uniform distribution off ~solid, s-marked line!. Absorbing
boundary conditions, andVa510 as in Fig. 1. Compare the averag
andf53/4 curves oft5t(g) shown here with the plots of Fig. 3
01210
se

III. RANDOM FLUCTUATIONS

The results of the preceding section suggest two con
sions: First, that resonant activation does exist in syste
executing deterministic oscillations, and second, that the
ture of the resonance effect in this case depends strongl
the configuration of the system att50, i.e., on the initial
conditions. In order to further investigate this dependence
have also analyzed the dynamics of a system that exec
dichotomic Markovian fluctuations of rateg @1#. The evolu-
tion operator in this case is

]

]t S P1

P2
D 5S L12g g

g L22g D S P1

P2
D , ~9!

where the Smoluchowski operators

L65
]

]x FdV

dx
6

]

]xG . ~10!

We setV(x)52Vasin2x, expand the distribution function
P6(x,t) according to Eq.~3!, and solve again the resultan
pentdiagonal linear differential system,

ȧ0
(6)52~11g7Va!a0

(6)1ga0
(7)7Vaa1

(6) , ~11!

ȧk
(6)56~2k11!Vaak21

(6) 2@g1~2k11!2#ak
(6)

1gak
(7)7~2k11!Vaak11

(6) , ~12!

k>1, by the backward Euler method@5# and subsequent LU
decomposition@6#.

The resultant relaxation time

t~g!5E
0

`

dt E
2p/2

p/2

dx@P1~x,t !1P2~x,t !# ~13!

is plotted in Fig. 3 for two sets of initial conditions: In th
first set, with P6(x,0)5d(x)/2 @1#, the system finds itself
with equal probability in the up and the down configuratio
at t50, while the second set,P1(x,0)50 and P2(x,0)
5d(x), so that att50 the system is with certainity inverte
~down! potential configuration. The computed function
t(g) are obviously exact counterparts of the curvest̃(g) and
t(g,3/4) discussed in the previous section. It should also
noted that the amplitude of the potential fluctuations is h
effectively larger than in the case of the continuous de
ministic oscillations, and therefore, the resonant amplitud
larger as well, and the resonant minimum is shifted to hig
values ofg. The two level system has no analogue of t
t(g,0) curve shown in Fig. 2, but it is probable that a simil
type of behavior could be found in a discrete multilevel sy
tem.

IV. A CONCLUDING REMARK

We have examined here two models of a thermally rel
ing system with time dependent barrier height. In the fi
1-2
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model, the barrier executes deterministic harmonic osc
tions, and in the second model dichotomic Markovian flu
tuations. The relaxation properties of the two systems w
found to be qualitatively identical, with both systems exh
iting a resonance effect and a similar dependence on in
conditions. In conclusion we wish to show that these pr
erties are shared also by systems in which only intraw
thermal relaxation takes place.

To this end we revert to the Smoluchowski Eq.~1!,
impose on it the reflecting boundary conditio
]P(6p/2,t)/]x50, and expand the distribution functio
P(x,t) as

P~x,t !5 (
k50

`

bk~ t !cos 2kx, ~14!

with P(x,0)5d(x) as before. The system is alternate
monostable and bistable, butP(x,t)5P(2x,t) by symme-
try, and no net flux over the barrier takes place. The sys
is also probability conserving, and a relaxation time must
defined with respect to a dynamic variable. We select h
for this purpose, the expectation value of cos 2x, and define
the relaxation time as

FIG. 3. The relaxation timet5t(g) versus the frequencyg of
dichotomic Markovian fluctuations. The dashed line correspond
the initial conditionsP1(x,0)50 andP2(x,0)5d(x) @barrier upside
down, see Eq.~9! in text#, whereas the solid,s-marked line repre-
sents an average over a uniform distribution of initial values, w
P1(x,0)5P2(x,0)5d(x)/2. Absorbing boundary conditions,Va

510 as in Figs. 1 and 2.
.
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tc~g,f!5
p

2E0

`

dt@b1~ t !2b1
(s)~ t !#, ~15!

whereb1
(s)(t) is the ~computed! periodic stationary limit of

the functionb1(t). Within the chosen normalization the fre
particle resultsb1(t)5(2/p)exp(24t) andb1

(s)(t)50 lead to
the limiting valuetc(0,0)51/4.

The computed curvestc(g,f) are shown in Fig. 4 for
f50, 1/4, 1/2, and 3/4. The curves are directly compara
to those of Fig. 2, but in thef53/4 curve the resonant mini
mum is superimposed over an increasing function ofg, giv-
ing rise to a closely spaced pair of a maximum and a m
mum. We also remark that Eq.~15! calls for subtraction of
two inexactly known oscillating functions, and that curv
tc(g,f) may therefore be burdened by a systematic num
cal error: There is, correctly, limg→`tc(g,f)51/4, and
tc(0,f)51/4 for f50 and 1/2, and alsotc(0,3/4)'0.118 is
comparable to the limiting value obtained in a separate
culation for a static potential. A similar calculation, howeve
yields tc(0,1/4)'3.2431024, which is more than an orde
of magnitude smaller than the values used here in Fig
Despite these numerical defects we may conclude tha
closed system with only intrawell thermal relaxation has
same resonant properties, and the same dependence on
conditions, as the two models of thermally driven dec
studied in Secs. I and II.

to
FIG. 4. The relaxation timetc5tc(g,f) versus the harmonic

oscillations frequencyg at selected values of the phasef50, 1/4,
1/2, and 3/4~as labeled!. Reflecting boundary conditions, andVa

510. See text for a discussion of the numerical accuracy of th
curves.
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