PHYSICAL REVIEW E, VOLUME 64, 012101
Resonant activation in a system with deterministic oscillations of barrier height

I. Klik and Y. D. Yao
Institute of Physics, Academia Sinica, Nankang, Taiwan 115, Taiwan
(Received 21 November 2000; published 6 June 2001

A thermally relaxing system with a harmonically oscillating barrier height is considered. The dynamics of
the system are described by a Smoluchowski equation with a time dependent right hand side. For both
absorbing and reflecting boundary conditions, the solutions of this equation show that the oscillating system
has the same resonant properties, and the same dependence on initial conditions, respectively, on the phase of
the harmonic oscillations, as a conventional resonant system in which the barrier executes dichotomic Mar-
kovian fluctuations.
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I. INTRODUCTION %

"9)= | dewo). ®
The phenomenon of resonant activation is generally asso- °

ciated with thermally relaxing systems in which the confin-  ypon substituting Eq(3) into the Smoluchowski Eq(1)

ing barrier executes random fluctuatiofts—4]. We find, e find that the coefficients,(t) satisfy the tridiagonal sys-
however, that the barrier fluctuations need not be randomem of linear differential equations

and show here that resonant activation is found also in sys-

tems performing deterministic harmonic oscillations of fre- ag=—(1-v)ag—vay, (6)
qguencyvy. Moreover, depending on the phase of the oscilla-

tions timet=0, the relaxation time may, in this case, have a g, — (2k+1)va,_;— (2k+1)2a,— (2k+1)vay. 1, (7)
single minimum as a function of, or a minimum and a

maximum, or no extremum at all. k=1, Whereékzdak/dt, and

Il. DETERMINISTIC OSCILLATIONS v=v(t)=Vysi2m(yt+ ¢)}

We consider an overdamped system described in scalefdr brevity. We apply to this differential system the back-
units by the Smoluchowski equation ward Euler method5], and solve therfafter cutof the re-
sultant tridiagonal linear system using Lorentz uhit)) de-

(1) composition6]. The accuracy of the computation is verified
by varying the cutoff valudtypically N=<5000 is sufficient
and the time step of the backward Euler integration.

For a general time dependent potentiat V(X,t) this equa- The behavior of the relaxation timgy, ¢) of Eq. (5) is

tion may be too difficult to solve with satisfactory precision, apparent from Fig. 1 and from the more detailed selected

and for this reason we confine ourselves to the special casglots of Fig. 2. According to these figures, the relaxation
. ) time has a resonant minimum as a functiomofor almost
$) =2V, sin{2m(yt+ h)}sin’ x, () all values of the phase, except for those close tp=23/4.
Particularly interesting is the behavior of the function

7(7,0) shown in Fig. 2: There i¥(x,t|0)|,—o=0, and ac-

cordingly 7(0,0)= 7y,.e= /8 corresponds to the free par-

ticle result. With increasing frequencies the relaxation time
initially increaseg/as the energy barrier to be overcome is
greater than zero fdre (0,1/2y)] towards a local maximum.

dV+(9
dx ' ox

P 4
gt ax

V=V(x,t

wherey is the frequency of the harmonic oscillations of the
potentialV, and ¢ is their phase. Imposing further on E4)
the absorbing boundary conditiof + 7/2,t) =0, we seek
the nonequilibrium distribution functiorP(x,t), P(x,0)

= §(x), in the form

w At even greater frequencies the functigfy,0) then exhibits
P(x,t)= >, a(t)cog2k+1)x. (3y  aresonant minimum, and lim... 7('y,0)= .. in accordance
k=0 with Ref. [2]. With increasing temperatur@lecreasing re-
duced energy/,) the local maximum shifts to the right and
The decay law then becomes the local minimum to the left along the axis. At the same
/2 w ® time the resonance amplitude decreases, and the free particle
m ak result is recovered in the lim¥,—0.
= P(x,t)=2 — 1)k 4 a
W) fﬂﬁzdx (x.t) kz'o( ) 2k+1’ “ At ¢=1/4 and ¢=1/2 the barrier height initially de-

creases at=0, and the curves(v,1/4) andr(y,1/2) there-
with W(0)=1 anda,(0)=2/= by virtue of the initial con- fore exhibit the customary single resonant extremummi-
ditions, and the relaxation time of the decaying system is mum), though with a lesser resonant amplitude &+ 1/2.
defined by the integral The functionr(v,3/4), on the other hand, monotonically in-
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FIG. 1. The relaxation time= (v, ¢) versus the phase at
selected values of the harmonic oscillations frequengywith
In y=-5 (labeled, —4, —3.5, —3, —2 (labeled, —1, 0 (labeled,

0.5, 1, 1.5, 2, 2.5, and &rontmost curvg Absorbing boundary

conditions, and/,= 10, so that the reduced barrier height is in the

interval (—20,20. See Fig. 2 for plots of-(y,¢) versusy at se-
lected values ofp.

creases withy, since att=0 the barrier is in the inverted
configuration and the relaxation rate>1/y for all but the
highest driving frequencies.

We have also computed an average over a random phase

b,

_ 1
7(7)=fod¢ (v, ), 8

and found it to be dominated at smadlby the larger values
close to¢p=1/4 (see Figs. 1 and)2and to have a single
extremum, viz the resonant minimum.

In{x(v,9)}

FIG. 2. The relaxation timer=7(7y,¢) versus the harmonic
oscillations frequency at selected values of the phage-0, 1/4,
1/2, and 3/4(labeled dashed lingsAlso shown is an average over
a uniform distribution of¢ (solid, O-marked ling. Absorbing
boundary conditions, and,= 10 as in Fig. 1. Compare the average
and ¢=3/4 curves ofr= 7(y) shown here with the plots of Fig. 3.
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I1Il. RANDOM FLUCTUATIONS

The results of the preceding section suggest two conclu-
sions: First, that resonant activation does exist in systems
executing deterministic oscillations, and second, that the na-
ture of the resonance effect in this case depends strongly on
the configuration of the system &0, i.e., on the initial
conditions. In order to further investigate this dependence we
have also analyzed the dynamics of a system that executes
dichotomic Markovian fluctuations of ratg[1]. The evolu-
tion operator in this case is

J [Py Li—vy Y P,
—| = - , (9)
Jt\P_ y L.—vy/\P_
where the Smoluchowski operators
_ J dV+ J 10
=l ax T x| (10)

We setV(x)=2V,sir’x, expand the distribution functions
P..(x,t) according to Eq(3), and solve again the resultant
pentdiagonal linear differential system,

ai=—-(1+yxVyal+ya{VFVval®, (11
al™)=+(2k+1)Val) —[y+(2k+1)%]al”)
+yal I F (2k+1)V,alt) (12)

k=1, by the backward Euler meth¢f] and subsequent LU
decompositior] 6].
The resultant relaxation time

% 2
7'(7)=J’ dt J dx[P,(x,t)+P_(x,1)] (13
0 — /2

is plotted in Fig. 3 for two sets of initial conditions: In the
first set, with P, (x,0)= 8(x)/2 [1], the system finds itself
with equal probability in the up and the down configurations
at t=0, while the second set?,(x,0)=0 and P_(x,0)

= §(x), so that at=0 the system is with certainity inverted
(down) potential configuration. The computed functions

7(y) are obviously exact counterparts of the curvég) and
7(,3/4) discussed in the previous section. It should also be
noted that the amplitude of the potential fluctuations is here
effectively larger than in the case of the continuous deter-
ministic oscillations, and therefore, the resonant amplitude is
larger as well, and the resonant minimum is shifted to higher
values ofy. The two level system has no analogue of the
7(,0) curve shown in Fig. 2, but it is probable that a similar
type of behavior could be found in a discrete multilevel sys-
tem.

IV. A CONCLUDING REMARK

We have examined here two models of a thermally relax-
ing system with time dependent barrier height. In the first
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FIG. 3. The relaxation time= 7(y) versus the frequency of FIG. 4. The relaxation time,= 7.(y,¢) versus the harmonic
dichotomic Markovian fluctuations. The dashed line corresponds tscillations frequencyy at selected values of the phage=0, 1/4,

the initial conditionsP;(x,0)=0 andP;(x,0)= 5(x) [barrier upside 12 and 3/4(as labelell Reflecting boundary conditions, ang,
down, see Eq(9) in text], whereas the solid)-marked line repre-  — 10 see text for a discussion of the numerical accuracy of these
sents an average over a uniform distribution of initial values, withq;res.

P1(x,0)=P5(x,0)= 8(x)/2. Absorbing boundary conditionsy,
=10 as in Figs. 1 and 2. T [
n(nd) =3[ dtb0-bPw1,  as
model, the barrier executes deterministic harmonic oscilla-
tions, and in the second model dichotomic Markovian fluc-where b(f)(t) is the (computed periodic stationary limit of
tuations. The relaxation properties of the two systems wer¢he functionb,(t). Within the chosen normalization the free
found to be qualitatively identical, with both systems exhib-particle results, (t) = (2/7)exp(—4t) andb{®(t) =0 lead to
iting a resonance effect and a similar dependence on initigthe limiting valuer.(0,0)=1/4.
conditions. In conclusion we wish to show that these prop- The computed curves.(y,¢) are shown in Fig. 4 for
erties are shared also by systems in which only intrawelp=0, 1/4, 1/2, and 3/4. The curves are directly comparable
thermal relaxation takes place. to those of Fig. 2, but in thes=3/4 curve the resonant mini-
To this end we revert to the Smoluchowski EQ),  mum is superimposed over an increasing functiory ofjiv-
impose on it the reflecting boundary conditionsing rise to a closely spaced pair of a maximum and a mini-
dP(£m/2t)/9x=0, and expand the distribution function mum. We also remark that E¢L5) calls for subtraction of

P(x,t) as two inexactly known oscillating functions, and that curves
7.(y, ») may therefore be burdened by a systematic numeri-

* cal error: There is, correctly, lim...7.(y,#)=1/4, and

P(x,t)= kEO by (t)cos Xx, (14 7.(0,¢)=1/4 for =0 and 1/2, and alse,(0,3/4)~0.118 is

comparable to the limiting value obtained in a separate cal-

culation for a static potential. A similar calculation, however,
with P(x,0)=48(x) as before. The system is alternately yields 7.(0,1/4)~3.24x 10 *, which is more than an order
monostable and bistable, bB{(x,t)=P(—x,t) by symme- of magnitude smaller than the values used here in Fig. 4.
try, and no net flux over the barrier takes place. The systerDespite these numerical defects we may conclude that a
is also probability conserving, and a relaxation time must beclosed system with only intrawell thermal relaxation has the
defined with respect to a dynamic variable. We select heresame resonant properties, and the same dependence on initial
for this purpose, the expectation value of cgs@&nd define conditions, as the two models of thermally driven decay

the relaxation time as studied in Secs. | and II.
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